SKLearner Home | About | Contact | Examples

SVM

Helpful examples of using Support Vector Machine (SVM) machine learning algorithms in scikit-learn.

Support Vector Machines (SVM) are supervised learning models used for classification and regression tasks.

In classification, SVM aims to find the optimal hyperplane that separates data points of different classes with the maximum margin. It uses support vectors, which are the closest data points to the hyperplane, to define the boundary.

For non-linearly separable data, SVM employs kernel functions to transform data into higher dimensions where a linear separator is possible.

In regression, SVM, known as Support Vector Regression (SVR), seeks to fit a model within a specified margin of tolerance, aiming to predict continuous values with minimal deviation.

Both SVM for classification and SVR rely on optimization techniques to minimize error while maximizing the margin or fit within the margin.

ExamplesTags
Configure SVC "break_ties" Parameter
Configure SVC "C" Parameter
Configure SVC "cache_size" Parameter
Configure SVC "class_weight" Parameter
Configure SVC "coef0" Parameter
Configure SVC "decision_function_shape" Parameter
Configure SVC "degree" Parameter
Configure SVC "gamma" Parameter
Configure SVC "kernel" Parameter
Configure SVC "max_iter" Parameter
Configure SVC "probability" Parameter
Configure SVC "random_state" Parameter
Configure SVC "shrinking" Parameter
Configure SVC "tol" Parameter
Configure SVC "verbose" Parameter
Configure SVR "C" Parameter
Configure SVR "cache_size" Parameter
Configure SVR "coef0" Parameter
Configure SVR "degree" Parameter
Configure SVR "epsilon" Parameter
Configure SVR "gamma" Parameter
Configure SVR "kernel" Parameter
Configure SVR "max_iter" Parameter
Configure SVR "shrinking" Parameter
Configure SVR "tol" Parameter
Configure SVR "verbose" Parameter
Scikit-Learn "LinearSVC" versus "SVC"
Scikit-Learn "LinearSVR" versus "SVR"
Scikit-Learn GridSearchCV LinearSVC
Scikit-Learn GridSearchCV LinearSVR
Scikit-Learn GridSearchCV NuSVC
Scikit-Learn GridSearchCV NuSVR
Scikit-Learn GridSearchCV SVC
Scikit-Learn GridSearchCV SVR
Scikit-Learn hinge_loss() Metric
Scikit-Learn LinearSVC Model
Scikit-Learn LinearSVR Model
Scikit-Learn NuSVC Model
Scikit-Learn NuSVR Model
Scikit-Learn OneClassSVM Model
Scikit-Learn RandomizedSearchCV LinearSVC
Scikit-Learn RandomizedSearchCV LinearSVR
Scikit-Learn RandomizedSearchCV NuSVC
Scikit-Learn RandomizedSearchCV NuSVR
Scikit-Learn RandomizedSearchCV SVC
Scikit-Learn RandomizedSearchCV SVR
Scikit-Learn SGDOneClassSVM Model
Scikit-Learn SVC Model
Scikit-Learn SVR Model