The metric_params
parameter in scikit-learn’s KNeighborsRegressor
allows passing additional parameters to the distance metric used for finding nearest neighbors.
This is particularly useful when using a custom distance metric that accepts parameters or one of the built-in metrics that takes additional arguments, such as 'wminkowski'
.
By default, metric_params
is set to None
, indicating that no additional parameters are passed to the metric.
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
import numpy as np
# Generate synthetic dataset
X, y = make_regression(n_samples=1000, n_features=5, noise=0.1, random_state=42)
# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define a custom distance metric that takes a parameter
def my_metric(x, y, pp=1):
return np.sum(np.abs(x - y) ** pp) ** (1 / pp)
# Instantiate KNeighborsRegressor with custom metric and metric_params
knn_custom = KNeighborsRegressor(n_neighbors=5, metric=my_metric, metric_params={'pp': 2})
knn_custom.fit(X_train, y_train)
y_pred_custom = knn_custom.predict(X_test)
mse_custom = mean_squared_error(y_test, y_pred_custom)
print(f"Custom metric with pp=2, MSE: {mse_custom:.3f}")
# Compare with KNeighborsRegressor without custom metric_params
knn_default = KNeighborsRegressor(n_neighbors=5)
knn_default.fit(X_train, y_train)
y_pred_default = knn_default.predict(X_test)
mse_default = mean_squared_error(y_test, y_pred_default)
print(f"Default metric, MSE: {mse_default:.3f}")
Running the example gives an output like:
Custom metric with pp=2, MSE: 261.960
Default metric, MSE: 261.960
The key steps in this example are:
- Generate a synthetic regression dataset
- Split the data into train and test sets
- Define a custom distance metric that takes a parameter
p
- Instantiate
KNeighborsRegressor
with the custom metric andmetric_params={'p': 2}
- Fit the model and evaluate its performance on the test set using mean squared error
- Compare with the performance of
KNeighborsRegressor
without custommetric_params
Some tips and heuristics for using metric_params
:
- Use
metric_params
when your chosen metric function accepts additional arguments metric_params
is useful for fine-tuning the behavior of custom distance metrics- The choice of
metric_params
can significantly impact the model’s performance
Issues to consider:
- Default metrics like
'euclidean'
do not acceptmetric_params
- The keys and values in
metric_params
must match the parameter names and expected types of the metric function - Incorrect parameter names or types will raise errors when fitting the model