SKLearner Home | About | Contact | Examples

Configure HistGradientBoostingRegressor "max_leaf_nodes" Parameter

The max_leaf_nodes parameter in scikit-learn’s HistGradientBoostingRegressor controls the maximum number of leaf nodes in each tree.

HistGradientBoostingRegressor is a gradient boosting algorithm that uses histogram-based decision trees. It’s designed for efficiency and can handle large datasets.

The max_leaf_nodes parameter limits the complexity of individual trees in the ensemble. It affects the model’s ability to capture complex patterns in the data.

By default, max_leaf_nodes is set to None, which means there’s no limit on the number of leaf nodes. Common values range from 10 to 1000, depending on the dataset’s complexity.

from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.metrics import mean_squared_error
import numpy as np
import matplotlib.pyplot as plt

# Generate synthetic dataset
X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=42)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train with different max_leaf_nodes values
max_leaf_nodes_values = [10, 50, 100, 500, None]
mse_scores = []

for max_nodes in max_leaf_nodes_values:
    model = HistGradientBoostingRegressor(max_leaf_nodes=max_nodes, random_state=42)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    mse_scores.append(mse)
    print(f"max_leaf_nodes={max_nodes}, MSE: {mse:.3f}")

# Plot results
plt.figure(figsize=(10, 6))
plt.plot(max_leaf_nodes_values[:-1] + [1000], mse_scores, marker='o')
plt.xscale('log')
plt.xlabel('max_leaf_nodes')
plt.ylabel('Mean Squared Error')
plt.title('Effect of max_leaf_nodes on Model Performance')
plt.show()

Running the example gives an output like:

max_leaf_nodes=10, MSE: 905.118
max_leaf_nodes=50, MSE: 972.103
max_leaf_nodes=100, MSE: 972.103
max_leaf_nodes=500, MSE: 972.103
max_leaf_nodes=None, MSE: 972.103

Configure HistGradientBoostingRegressor “max_iter” Parameter

The key steps in this example are:

  1. Generate a synthetic regression dataset
  2. Split the data into train and test sets
  3. Train HistGradientBoostingRegressor models with different max_leaf_nodes values
  4. Evaluate the mean squared error of each model on the test set
  5. Plot the results to visualize the effect of max_leaf_nodes

Some tips and heuristics for setting max_leaf_nodes:

Issues to consider:



See Also