SKLearner Home | About | Contact | Examples

Configure ExtraTreesRegressor "max_depth" Parameter

The max_depth parameter in scikit-learn’s ExtraTreesRegressor controls the maximum depth of the trees in the ensemble.

ExtraTreesRegressor is an ensemble method that combines multiple randomized decision trees to create a robust and accurate regression model. The max_depth parameter limits how deep each tree can grow, affecting the model’s complexity and performance.

Setting max_depth helps prevent overfitting by limiting the model’s ability to memorize training data. It balances the trade-off between bias and variance, influencing the model’s ability to generalize to new data.

The default value for max_depth is None, which allows trees to grow until all leaves are pure or contain less than min_samples_split samples. In practice, values between 5 and 30 are commonly used, depending on the dataset’s complexity.

from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.metrics import mean_squared_error
import numpy as np

# Generate synthetic dataset
X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=42)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train with different max_depth values
max_depth_values = [None, 5, 10, 20, 30]
mse_scores = []

for depth in max_depth_values:
    etr = ExtraTreesRegressor(n_estimators=100, max_depth=depth, random_state=42)
    etr.fit(X_train, y_train)
    y_pred = etr.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    mse_scores.append(mse)
    print(f"max_depth={depth}, MSE: {mse:.3f}")

# Find best max_depth
best_depth = max_depth_values[np.argmin(mse_scores)]
print(f"\nBest max_depth: {best_depth}")

Running the example gives an output like:

max_depth=None, MSE: 2036.183
max_depth=5, MSE: 4934.230
max_depth=10, MSE: 2477.139
max_depth=20, MSE: 1928.957
max_depth=30, MSE: 2036.183

Best max_depth: 20

The key steps in this example are:

  1. Generate a synthetic regression dataset
  2. Split the data into train and test sets
  3. Train ExtraTreesRegressor models with different max_depth values
  4. Evaluate the mean squared error of each model on the test set
  5. Identify the best max_depth value based on lowest MSE

Some tips and heuristics for setting max_depth:

Issues to consider:



See Also