SKLearner Home | About | Contact | Examples

Configure ElasticNet "precompute" Parameter

The precompute parameter in scikit-learn’s ElasticNet determines whether a precomputed Gram matrix should be used to speed up the computations.

ElasticNet is a linear regression model that combines L1 and L2 regularization. It is used to handle datasets with multicollinearity and to perform variable selection. The precompute parameter decides if a precomputed Gram matrix is used during the fitting process, which can improve computational efficiency.

By default, precompute is set to False, meaning the Gram matrix is not precomputed. Common values for this parameter are True, False, or a precomputed Gram matrix itself. Using precompute=True can be beneficial for large datasets where the Gram matrix calculation can save time.

from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_squared_error

# Generate synthetic dataset
X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=42)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train with different precompute values
precompute_values = [True, False]
mse_values = []

for precompute in precompute_values:
    en = ElasticNet(precompute=precompute, random_state=42)
    en.fit(X_train, y_train)
    y_pred = en.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    mse_values.append(mse)
    print(f"precompute={precompute}, MSE: {mse:.3f}")

Running the example gives an output like:

precompute=True, MSE: 2090.250
precompute=False, MSE: 2090.250

The key steps in this example are:

  1. Generate a synthetic regression dataset with noise
  2. Split the data into train and test sets
  3. Train ElasticNet models with different precompute values
  4. Evaluate the mean squared error (MSE) of each model on the test set

Some tips and heuristics for setting precompute:

Issues to consider:



See Also