SKLearner Home | About | Contact | Examples

Configure ElasticNet "copy_X" Parameter

The copy_X parameter in scikit-learn’s ElasticNet controls whether the input X is copied or overwritten during fitting.

ElasticNet combines L1 and L2 regularization, making it useful for datasets with correlated features. The copy_X parameter determines whether the input data X is copied or modified in place.

Using the default value of True ensures that the input data is not altered, which is safe but consumes more memory. Setting copy_X=False can save memory but may change the input data, which could be problematic in some cases.

The default value for copy_X is True.

In practice, you can set copy_X=False when you need to conserve memory and are aware that the input data will be modified.

from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_squared_error

# Generate synthetic regression dataset
X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=42)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train with copy_X=True and copy_X=False
copy_X_values = [True, False]
results = []

for copy_X in copy_X_values:
    en = ElasticNet(copy_X=copy_X, random_state=42)
    en.fit(X_train, y_train)
    y_pred = en.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    results.append((copy_X, mse))
    print(f"copy_X={copy_X}, Mean Squared Error: {mse:.3f}")

Running the example gives an output like:

copy_X=True, Mean Squared Error: 2090.250
copy_X=False, Mean Squared Error: 2090.250

The key steps in this example are:

  1. Generate a synthetic regression dataset with informative and noise features.
  2. Split the data into train and test sets.
  3. Train ElasticNet models with copy_X=True and copy_X=False.
  4. Evaluate the mean squared error of each model on the test set.

Some tips and heuristics for setting copy_X:

Issues to consider:



See Also