The warm_start
parameter in scikit-learn’s BaggingRegressor
determines whether to reuse the solution of the previous call to fit and add more estimators to the ensemble.
Bagging is an ensemble method that combines predictions from multiple base estimators to improve generalization and robustness. The warm_start
parameter allows for incremental fitting of the ensemble.
When warm_start
is set to True
, the model can be fitted incrementally, adding new estimators to the existing ensemble. When False
, fitting always starts from scratch.
The default value for warm_start
is False
.
Setting warm_start
to True
is useful when you want to gradually increase the number of estimators or when working with large datasets that don’t fit in memory.
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingRegressor
from sklearn.metrics import mean_squared_error
import numpy as np
# Generate synthetic dataset
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=42)
# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize BaggingRegressors
br_cold = BaggingRegressor(n_estimators=10, random_state=42, warm_start=False)
br_warm = BaggingRegressor(n_estimators=10, random_state=42, warm_start=True)
# Fit incrementally and evaluate
n_estimator_steps = [10, 20, 50, 100]
cold_mse = []
warm_mse = []
for n_estimators in n_estimator_steps:
br_cold.n_estimators = n_estimators
br_cold.fit(X_train, y_train)
y_pred_cold = br_cold.predict(X_test)
cold_mse.append(mean_squared_error(y_test, y_pred_cold))
br_warm.n_estimators = n_estimators
br_warm.fit(X_train, y_train)
y_pred_warm = br_warm.predict(X_test)
warm_mse.append(mean_squared_error(y_test, y_pred_warm))
print(f"n_estimators={n_estimators}")
print(f"Cold start MSE: {cold_mse[-1]:.4f}")
print(f"Warm start MSE: {warm_mse[-1]:.4f}")
print()
Running the example gives an output like:
n_estimators=10
Cold start MSE: 7486.4813
Warm start MSE: 7486.4813
n_estimators=20
Cold start MSE: 7469.0224
Warm start MSE: 7469.0224
n_estimators=50
Cold start MSE: 7111.1779
Warm start MSE: 7111.1779
n_estimators=100
Cold start MSE: 6971.3948
Warm start MSE: 6971.3948
The key steps in this example are:
- Generate a synthetic regression dataset
- Split the data into train and test sets
- Create two
BaggingRegressor
instances, one withwarm_start=False
and another withwarm_start=True
- Incrementally fit both models, increasing the number of estimators in stages
- Evaluate the mean squared error of both models at each stage
Some tips for using warm_start
:
- Use
warm_start=True
when you want to incrementally add estimators to an existing ensemble - It can be beneficial for large datasets or when tuning the optimal number of estimators
- Combine with early stopping techniques to find the optimal number of estimators efficiently
Issues to consider:
- With
warm_start=True
, changing other parameters of the model may lead to unexpected results - The computational efficiency of warm start depends on the base estimator and dataset size
- Memory usage increases with the number of estimators, which may be a concern for very large ensembles