SKLearner Home | About | Contact | Examples

SGD

Helpful examples of linear machine learning algorithms fit using Stochastic Gradient Descent (SGD) in scikit-learn.

Linear algorithms fitted with Stochastic Gradient Descent (SGD) are efficient and scalable methods for solving linear regression and classification problems, especially with large datasets. SGD is an iterative optimization technique that aims to minimize a cost function, such as mean squared error for regression or hinge loss for classification, by adjusting the model parameters incrementally.

In SGD, instead of computing the gradient of the cost function over the entire dataset, the algorithm updates the parameters using the gradient computed from a single data point or a small batch of data points at each iteration. This stochastic nature of the updates makes the algorithm faster and capable of handling large datasets that do not fit into memory.

Key characteristics of SGD with linear algorithms include:

  1. Efficiency: It is computationally efficient and suitable for large-scale problems due to its incremental updates.
  2. Scalability: It can handle very large datasets by processing one or a few samples at a time.
  3. Flexibility: It can be applied to various linear models, including Linear Regression, Logistic Regression, and Support Vector Machines (SVMs).
  4. Regularization: Techniques like L1 (Lasso), L2 (Ridge), or Elastic Net regularization can be easily incorporated to prevent overfitting.
  5. Hyperparameter Sensitivity: Requires careful tuning of hyperparameters such as learning rate and the number of iterations for optimal performance.

Despite its advantages, SGD can be sensitive to the choice of hyperparameters and may converge to a suboptimal solution if not properly tuned. However, with appropriate adjustments, it provides a powerful tool for training linear models on large datasets efficiently.

ExamplesTags
Configure SGDClassifier "alpha" Parameter
Configure SGDClassifier "average" Parameter
Configure SGDClassifier "class_weight" Parameter
Configure SGDClassifier "early_stopping" Parameter
Configure SGDClassifier "epsilon" Parameter
Configure SGDClassifier "eta0" Parameter
Configure SGDClassifier "fit_intercept" Parameter
Configure SGDClassifier "l1_ratio" Parameter
Configure SGDClassifier "learning_rate" Parameter
Configure SGDClassifier "loss" Parameter
Configure SGDClassifier "max_iter" Parameter
Configure SGDClassifier "n_iter_no_change" Parameter
Configure SGDClassifier "n_jobs" Parameter
Configure SGDClassifier "penalty" Parameter
Configure SGDClassifier "power_t" Parameter
Configure SGDClassifier "random_state" Parameter
Configure SGDClassifier "shuffle" Parameter
Configure SGDClassifier "tol" Parameter
Configure SGDClassifier "validation_fraction" Parameter
Configure SGDClassifier "verbose" Parameter
Configure SGDClassifier "warm_start" Parameter
Configure SGDRegressor "alpha" Parameter
Configure SGDRegressor "average" Parameter
Configure SGDRegressor "early_stopping" Parameter
Configure SGDRegressor "epsilon" Parameter
Configure SGDRegressor "eta0" Parameter
Configure SGDRegressor "fit_intercept" Parameter
Configure SGDRegressor "l1_ratio" Parameter
Configure SGDRegressor "learning_rate" Parameter
Configure SGDRegressor "loss" Parameter
Configure SGDRegressor "max_iter" Parameter
Configure SGDRegressor "n_iter_no_change" Parameter
Configure SGDRegressor "penalty" Parameter
Configure SGDRegressor "power_t" Parameter
Configure SGDRegressor "random_state" Parameter
Configure SGDRegressor "shuffle" Parameter
Configure SGDRegressor "tol" Parameter
Configure SGDRegressor "validation_fraction" Parameter
Configure SGDRegressor "verbose" Parameter
Configure SGDRegressor "warm_start" Parameter
Scikit-Learn GridSearchCV SGDClassifier
Scikit-Learn GridSearchCV SGDRegressor
Scikit-Learn RandomizedSearchCV SGDClassifier
Scikit-Learn RandomizedSearchCV SGDRegressor
Scikit-Learn SGDClassifier Model
Scikit-Learn SGDOneClassSVM Model
Scikit-Learn SGDRegressor Model