SKLearner Home | About | Contact | Examples

Scikit-Learn load_breast_cancer() Dataset

The Breast Cancer dataset is a classic dataset commonly used for classification tasks to predict whether a tumor is malignant or benign based on various features.

Key function arguments when loading the dataset include return_X_y to specify if data should be returned as a tuple, and as_frame to get the data as a pandas DataFrame.

This is a binary classification problem where common algorithms like Logistic Regression, Support Vector Machines, and Random Forests are often applied.

from sklearn.datasets import load_breast_cancer

# Load the dataset
dataset = load_breast_cancer(as_frame=True)

# Display dataset shape and types
print(f"Dataset shape: {dataset.data.shape}")
print(f"Feature types:\n{dataset.data.dtypes}")

# Show summary statistics
print(f"Summary statistics:\n{dataset.data.describe()}")

# Display first few rows of the dataset
print(f"First few rows of the dataset:\n{dataset.data.head()}")

# Split the dataset into input and output elements
X = dataset.data
y = dataset.target
print(f"Input shape: {X.shape}")
print(f"Output shape: {y.shape}")

Running the example gives an output like:

Dataset shape: (569, 30)
Feature types:
mean radius                float64
mean texture               float64
mean perimeter             float64
mean area                  float64
mean smoothness            float64
mean compactness           float64
mean concavity             float64
mean concave points        float64
mean symmetry              float64
mean fractal dimension     float64
radius error               float64
texture error              float64
perimeter error            float64
area error                 float64
smoothness error           float64
compactness error          float64
concavity error            float64
concave points error       float64
symmetry error             float64
fractal dimension error    float64
worst radius               float64
worst texture              float64
worst perimeter            float64
worst area                 float64
worst smoothness           float64
worst compactness          float64
worst concavity            float64
worst concave points       float64
worst symmetry             float64
worst fractal dimension    float64
dtype: object
Summary statistics:
       mean radius  mean texture  ...  worst symmetry  worst fractal dimension
count   569.000000    569.000000  ...      569.000000               569.000000
mean     14.127292     19.289649  ...        0.290076                 0.083946
std       3.524049      4.301036  ...        0.061867                 0.018061
min       6.981000      9.710000  ...        0.156500                 0.055040
25%      11.700000     16.170000  ...        0.250400                 0.071460
50%      13.370000     18.840000  ...        0.282200                 0.080040
75%      15.780000     21.800000  ...        0.317900                 0.092080
max      28.110000     39.280000  ...        0.663800                 0.207500

[8 rows x 30 columns]
First few rows of the dataset:
   mean radius  mean texture  ...  worst symmetry  worst fractal dimension
0        17.99         10.38  ...          0.4601                  0.11890
1        20.57         17.77  ...          0.2750                  0.08902
2        19.69         21.25  ...          0.3613                  0.08758
3        11.42         20.38  ...          0.6638                  0.17300
4        20.29         14.34  ...          0.2364                  0.07678

[5 rows x 30 columns]
Input shape: (569, 30)
Output shape: (569,)

The steps are as follows:

  1. Import the load_breast_cancer function from sklearn.datasets:

    • This function allows us to load the Breast Cancer dataset directly from the scikit-learn library.
  2. Load the dataset using load_breast_cancer():

    • Use as_frame=True to return the dataset as a pandas DataFrame for easier data manipulation and analysis.
  3. Print the dataset shape and feature types:

    • Access the shape using dataset.data.shape.
    • Show the data types of the features using dataset.data.dtypes.
  4. Display summary statistics:

    • Use dataset.data.describe() to get a statistical summary of the dataset.
  5. Display the first few rows of the dataset:

    • Print the initial rows using dataset.data.head() to get a sense of the dataset structure and content.
  6. Split the dataset into input and output elements:

    • Separate the features (X) from the target variable (y).
    • Print the shapes of X and y to confirm the split.

This example demonstrates how to quickly load and explore the Breast Cancer dataset using scikit-learn’s load_breast_cancer() function, allowing you to inspect the data’s shape, types, summary statistics, and visualize a key feature. This sets the stage for further preprocessing and application of classification algorithms.



See Also