Tuning hyperparameters is vital for optimizing machine learning models. In this example, we’ll demonstrate how to use scikit-learn’s GridSearchCV
to perform hyperparameter tuning for TweedieRegressor
, a flexible model for regression tasks.
Grid search is a technique for hyperparameter optimization by exhaustively searching through a parameter grid, training, and evaluating models using cross-validation to find the best configuration.
TweedieRegressor is suitable for a wide range of distributions from normal to Poisson and Gamma. It is particularly useful for datasets with zero-inflated values and continuous distributions.
The most critical hyperparameters for TweedieRegressor
include power
(the power parameter for the Tweedie distribution), alpha
(regularization strength), and max_iter
(maximum number of iterations).
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import TweedieRegressor
# Generate synthetic regression dataset
X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=42)
# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define parameter grid
param_grid = {
'power': [0, 1, 1.5, 2],
'alpha': [0.1, 1, 10],
'max_iter': [100, 1000, 10000]
}
# Perform grid search
grid_search = GridSearchCV(estimator=TweedieRegressor(),
param_grid=param_grid,
cv=5,
scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
# Report best score and parameters
print(f"Best score: {grid_search.best_score_:.3f}")
print(f"Best parameters: {grid_search.best_params_}")
# Evaluate on test set
best_model = grid_search.best_estimator_
score = best_model.score(X_test, y_test)
print(f"Test set R^2 score: {score:.3f}")
Running the example gives an output like:
Best score: -163.719
Best parameters: {'alpha': 0.1, 'max_iter': 100, 'power': 0}
Test set R^2 score: 0.991
The steps are as follows:
- Generate a synthetic regression dataset using
make_regression
. - Split the dataset into train and test sets using
train_test_split
. - Define the parameter grid with different values for
power
,alpha
, andmax_iter
hyperparameters. - Perform grid search using
GridSearchCV
, specifying theTweedieRegressor
model, parameter grid, 5-fold cross-validation, and negative mean squared error scoring metric. - Report the best cross-validation score and best set of hyperparameters found by grid search.
- Evaluate the best model on the hold-out test set and report the R² score.
By using GridSearchCV
, different hyperparameter settings can be explored to find the best-performing configuration for TweedieRegressor
. This automated approach streamlines the process of hyperparameter tuning and helps ensure the optimal configuration for regression tasks.