Hyperparameter tuning is a crucial step in optimizing machine learning models for best performance. In this example, we’ll demonstrate how to use scikit-learn’s GridSearchCV
to perform hyperparameter tuning for PoissonRegressor
, a popular algorithm for modeling count data.
Grid search is a method for evaluating different combinations of model hyperparameters to find the best performing configuration. It exhaustively searches through a specified parameter grid, trains and evaluates the model for each combination using cross-validation, and selects the hyperparameters that yield the best performance metric.
PoissonRegressor
is used for modeling count data and assumes the target variable follows a Poisson distribution. It is suitable for datasets where the outcome variable is a count of events.
The key hyperparameters for PoissonRegressor
include the regularization strength (alpha
), which helps prevent overfitting; the fit_intercept
parameter, which determines whether to calculate the intercept for the model; and the max_iter
, which specifies the maximum number of iterations for the solver to converge.
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import PoissonRegressor
import numpy as np
# Generate synthetic count data
rng = np.random.RandomState(42)
X = rng.randn(1000, 10)
y = rng.poisson(lam=np.exp(0.5 * X[:, 0] - 0.3 * X[:, 1]), size=1000)
# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define parameter grid
param_grid = {
'alpha': [0.1, 1, 10],
'fit_intercept': [True, False],
'max_iter': [100, 500, 1000]
}
# Perform grid search
grid_search = GridSearchCV(estimator=PoissonRegressor(),
param_grid=param_grid,
cv=5,
scoring='neg_mean_poisson_deviance')
grid_search.fit(X_train, y_train)
# Report best score and parameters
print(f"Best score: {grid_search.best_score_:.3f}")
print(f"Best parameters: {grid_search.best_params_}")
# Evaluate on test set
best_model = grid_search.best_estimator_
test_score = best_model.score(X_test, y_test)
print(f"Test set score: {test_score:.3f}")
Running the example gives an output like:
Best score: -1.138
Best parameters: {'alpha': 0.1, 'fit_intercept': False, 'max_iter': 100}
Test set score: 0.285
The steps are as follows:
- Generate a synthetic dataset using a Poisson distribution to simulate count data.
- Split the dataset into train and test sets using
train_test_split
. - Define the parameter grid with different values for
alpha
,fit_intercept
, andmax_iter
hyperparameters. - Perform grid search using
GridSearchCV
, specifying thePoissonRegressor
model, parameter grid, 5-fold cross-validation, and negative mean Poisson deviance as the scoring metric. - Report the best cross-validation score and best set of hyperparameters found by grid search.
- Evaluate the best model on the hold-out test set and report the score.
By using GridSearchCV
, we can effectively explore different hyperparameter settings and find the configuration that maximizes the model’s performance for count data using PoissonRegressor
. This approach automates hyperparameter tuning, ensuring optimal performance with minimal manual effort.